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Abstract

Three-way decomposition is a very versatile analysis tool with applications in a variety of protein NMR fields. It has been used to
extract structural data from 3D NOESYs, to determine relaxation rates in large proteins, to identify ligand binding in screening for
lead compounds, and to complement non-uniformly recorded (sparse) spectra. All applications so far concerned experimental data
sets; it thus remains to address questions of accuracy and robustness of the method using simulated data where the correct answer is
known. Systematic tests are presented for relaxation and NOESY data sets. Mixtures of real and synthetic data are used to allow
control of various parameters and comparisons with correct reference data, while working with input that is as realistic as possible.
The influence of the following parameters is evaluated: signal-to-noise, overlap of signals and the use of a regularization procedure
within the algorithm. The main criteria used for the evaluation are accuracy and precision. It is shown that deterioration of accuracy
is indicated by internal checks such as decrease of precision. Both with relaxation data and when interpreting NOESY spectra, three-
way decomposition exhibits a robust behavior in situations with severe signal overlap and/or poor signal-to-noise, e.g., by avoiding
false positives in the NOE shapes of NOESY decompositions. As a complement to this study, three-way decomposition is compared
to other methods that achieve the same type of results.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Three-way decomposition (TWD) is an analysis tool
applicable to various types of NMR data sets [1]. Its
underlying model is tightly coupled to multidimensional
NMR spectroscopy and the basic decomposition formula
can in fact be derived from a general pulse sequence
describing a NMR experiment [2]. A consequence of this
model is that the signals found in a NMR spectrum are
grouped into ‘‘natural’’ subsets called components. Con-
sider the example of a 15N-NOESY–HSQC [1]. All NOE
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signals in this spectrum are automatically, i.e., without
specific user instruction, grouped so that each component
exactly describes the NOEs to one amide proton HN.
During this grouping, overlap among signals is very effi-
ciently resolved. The decomposition avoids to a large ex-
tent the inclusion of noise and certain artifacts into the
components, collecting them in a residual term. Similarly,
in relaxation or ligand binding studies, which are typically
based on a set of 2D 15N-HSQC-type spectra, the decom-
position is again performed for individual amide groups.
This allows proper separation of overlapping signals, pro-
viding correct signal intensities. Another property of the
TWD model is the absence of any requirement on signal
shapes. Thus, TWD works equally well on signals with
the appearance of Lorentzian or similar curves, of decay-
ing sine functions describing FIDs, of exponential decays
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coupled to relaxation processes, or of any other shape.
Furthermore, the line forms of the signals along the vari-
ous dimensions in multidimensional spectra can be an
arbitrary combination of different shape types. Finally,
a recently introduced modification of the algorithm al-
lows the application of TWD to sparsely recorded time-
domain data sets in order to computationally fill the gaps
and obtain full data sets [3].

TWD has been applied to a wide range of NMR data
sets demonstrating its usefulness in various situations.
From a 15N-NOESY–HSQC for the 128 residue long pro-
tein azurin a complete set of NOEs was extracted and it
was shown that this set coincides closely with short pro-
ton-proton distances observed in the crystal structure of
the same protein [4]. The TWD analysis thus provided a
highly complete and reliable input for structure calcula-
tions. ThoroughTWDanalyses were performed for relax-
ation data including a demonstration of themethod using
T1q data for azurin [5], and the determination of T1 relax-
ation times for all 341 assigned backbone amide groups of
the 370 residue long protein maltose binding protein
(MBP) [6]. Overlapping signals from up to three different
amide groups were resolved. More recently, TWD has
been applied in a routine manner in several relaxation
studies [7–12]. A TWD application similar to the analysis
of relaxation data is the use of decomposition for the
screening of potential ligands for a target protein [13],
since again a series of 2D 15N-HSQC-type spectra form
the input. One difference is that the number of spectra is
much larger, reaching several hundred 2D spectra; an-
other is that instead of extracting a relaxation curve,
TWD detects spectra where certain peaks have changed
position. This screening is achieved in a single-step, avoid-
ing peak picking with the necessity to characterize uncer-
tain peaks. A rather different usage of TWD concerns the
reconstruction of time-domain data sets from experi-
ments performed in a sparse mode [14]. This allows time
savings on expensive instruments by factors of three to
five. It may be noted that for many of the above applica-
tions, there are few feasible alternatives to the analysis
with TWD. This includes in particular proper separation
of intensities for highly overlapped peaks in relaxation
data or reliable reconstruction from sparse data in the
case of NOESY spectra, which contain many peaks with
widely varying intensities.

All the above TWD applications concern experimen-
tal data sets for the demonstration of the general appli-
cability of TWD or simply for its routine use.
Indications for the correctness of the TWD results could
sometimes be derived by comparing these to indepen-
dent data, e.g., a crystal structure in the case of extrac-
tion of distance information from NOESY spectra [4].
In other cases, e.g., with relaxation measurements, no
truly independent data is available and the only compar-
ison possible was by applying another method to the
same NMR spectra [6]. For a thorough description of
any novel approach, its behavior should be character-
ized under controlled conditions using synthetic input
with a priori known answers. Simulation studies have
for example shown the advantages and limitations of
methods such as linear prediction [15] or maximum en-
tropy reconstruction [16].

The main goal of the present study is thus to systemat-
ically analyze the potential of TWD in terms of absolute
accuracy, robustness in difficult situations and the extent
to which internal error calculations, i.e., precision, corre-
late with accuracy. Parameters varied in the analysis are
the extents of signal overlap and noise, and the use of a
regularization procedure. Both extraction of data from
a 3D spectrum, a 15N-NOESY–HSQC, and a set of 2D
spectra, 15N-HSQC, are investigated. The resulting data
provide guidelines for the reliability of TWD in difficult
situations. While this goal can only be achieved by com-
parison of the TWD output with a priori known results,
comparisons with alternative methods can provide addi-
tional information. Thus, for the case of relaxation data,
comparisons are also performed with other tools that
yield the same type of results, namely relaxation times;
for NOESY decompositions no other tools have, to our
knowledge, been described that yield shapes correspond-
ing to the TWD output.
2. Methods

The application of TWD to a 3D NMR data set is
based on the model assumption that this data set can
be approximated by a sum of components [1]. Each
component is a 3D entity of the same size as the original
data set, but containing only a subset of the signals.
Components are in turn defined as direct products of
three one-dimensional vectors called shapes; because
all shapes are normalized, their direct product is further
multiplied by an amplitude. Mathematically, this idea
can be expressed as follows:

Sijk �
XM
m¼1

am � F 1mi � F 2mj � F 3mk ; ð1Þ

where Sijk is a matrix element describing the experimen-
tal 3D NMR data set, and the indices i, j, and k cover
the entire spectrum S. Each of the M terms in the sum
represents one component defined by the normalized
1D shape vectors F1m, F2m, and F3m and the overall
amplitude am. The TWD algorithm will find shape vec-
tors F1m, F2m, and F3m and amplitudes am that opti-
mally approximate a given experimental spectrum S
(thus the � sign). More specifically, it will minimize
the penalty function defined by the following expression:
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where Sijk and the shapes F1n, F2n, and F3n and ampli-
tudes an have the same meaning as in Eq. (1). The num-
ber N is input to the algorithm and represents an
estimate of the true number of components M. In most
applications a good estimate is easy to find, e.g., for a
15N-NOESY–HSQC each amide group will define one
component [1,4]. Over-estimating M by about 10% will
not affect the performance of the algorithm. The new
sum at the end of expression (2) is used for regulariza-
tion, i.e., it will ensure that all component amplitudes
are of comparable size. The parameter k refers to the
Tikhonov regularization factor [17].

The flowchart in Fig. 1 summarizes the procedure
used for testing TWD implemented as the program
MUNIN [4]. Various input spectra are created (left
side of flowchart) and decomposed with MUNIN
according to expression (2). Input spectra are con-
structed according to Eq. (1) using shapes that can
be either synthesized or extracted from experimental
spectra, and user-defined amplitudes. In addition, syn-
thetic or real noise, the latter typically extracted from
empty regions of experimental spectra, is added
according to predefined signal-to-noise ratios (S/N).
The output shapes from MUNIN can be compared
to the input shapes for the determination of accuracy,
and subjected to other analyses.
Fig. 1. Flowchart depicting the simulation procedure. The left part describe
determined synthetically or constructed from experimental data, and noise da
a random number generator. Noise modulation includes scaling and reshuffli
simulated input spectrum (bottom of flowchart). The right side of the figure pr
Shapes of the resulting components can be compared with the input shapes
2.1. Simulations using relaxation data

A series of calculations were designed to analyze the
influence of noise and overlap on the accuracy and pre-
cision of relaxation times extracted with TWD. Relaxa-
tion times are usually obtained from a set of 2D spectra,
where the intensity of a peak with given frequencies
along the two axes follows an exponential decay. Typi-
cally, 15N-HSQC spectra are used for this purpose
[18]. Although TWD works with any line forms, ideal
shapes were used to construct an input spectrum in or-
der to control the extent of overlap between two peaks
that describe two atom groups with different relaxation
behavior and to determine the accuracy of the resulting
relaxation times. Shapes along the two frequency dimen-
sions (e.g., HN and 15N) were defined as absorption
Lorentzian line-shapes according to:

f ðXÞ ¼ W
a

1þ a2ðX� X0Þ2
; ð3Þ

where W is a normalization factor, the inverse of a de-
scribes the line width of a Lorentzian, and X0 indicates
the center of the peak. Shapes in the relaxation dimen-
sion followed a simple exponential function with a nor-
malization factor A and a relaxation time T0:

f ðtÞ ¼ Ae�t=T 0

: ð4Þ
s the preparation of the input spectra consisting of signal data either
ta either obtained from experimental spectra or created with the help of
ng (see Section 2). The combination of signal and noise data forms the
esents the decomposition by MUNIN and the evaluation of the results.
or they can be further analyzed, e.g., by deriving relaxation times.
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Planes with frequency axes of the size 35 * 35 points
were used. Two peaks were placed onto the diagonal
by applying Eq. (3) along each axis. The initial intensity
ratio between the two peaks was set to 3:4. For both
peaks, a was set to 1/3 yielding a half width at half
height of 3 points. Variations of X0 allowed to move
the two peaks along the diagonal towards each other
and thus to control the overlap between the two peaks
in the frequency dimensions. Using Eq. (1) and with a
third shape defined by Eq. (4), an input data set with
12 planes was created for each calculation. Values of t
in Eq. (4) were varied between 0 and 50 ms (with values
of 0, 1, 2, 3, 5, 8, 12, 17, 24, 31, 40, and 50 ms), and the
relaxation times T 0 for the strong and weak peaks were
set to 28 and 40 ms, respectively. Noise was then added
at various, user-defined S/N ratios. For this purpose, a
pool with 400 noise planes was created as follows to en-
sure spectrum-like noise. FIDs containing random
Gaussian noise were created and processed in the same
way as spectral FIDs, i.e., zero-filled, multiplied by a
window function and Fourier transformed. Randomly
selected noise planes from the pool were added to each
of the 12 planes with the two peaks and this yielded
the input spectra for MUNIN (Fig. 1). For each choice
of overlap and S/N, calculations were repeated 50 times
with different noise planes to obtain statistical results for
accuracies and precision.

MUNIN was applied to various input spectra with
different choices for signal overlap, S/N and the regular-
ization factor k. Relaxation times from the MUNIN
output were extracted by a least square fit of the output
shapes along the relaxation dimension utilizing a routine
from the DASHA package [19]. The corresponding fit-
ting errors Derr were estimated by covariance matrix
calculation. For each choice of overlap and S/N, the
average measurement precision over 50 runs with differ-
ent noise is reported as a logarithm:

logðprecÞ ¼ logðhDerrii=T 0Þ: ð5Þ
The brackets describe averaging over the i = 1,. . .,50
runs. Similarly, accuracy of the resulting relaxation
times Ti from the 50 decompositions is reported with
the following logarithm:

logðaccÞ ¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðT i � T 0Þ2

50 � T 02

s
; ð6Þ

where T 0 is the true value, which is used for normaliza-
tion also in the definition of a precision entity (Eq. (5))
to allow better comparisons between the numbers ob-
tained from Eqs. (5) and (6).

2.2. Comparisons with other methods

Complementing the above analysis on the extraction
of relaxation data using TWD, comparisons were made
with other methods using the same simulated spectra. A
first comparison is with a simple (but widely used) ap-
proach, in the following referred to as conventional pro-
cedure. In the input spectra, i.e., after addition of noise
to the constructed spectra, intensities at the locations of
the peak center in the input shapes were evaluated and
an exponential function was fitted to the resulting curve
using the same routine as above from the DASHA pack-
age. Again, results were obtained by averaging over 50
runs with different noise and overlap according to Eqs.
(5) and (6). A second comparison is with a tool from
the software package nmrPipe, the routine ‘‘nlinLS’’
[20]. As input, this method requires start values for the
peak positions, the line widths and the relaxation times
as well as a choice between Gaussian and Lorentzian
line forms. Again, calculations of 50 runs for each com-
bination of overlap and noise were performed with the
following start values derived from the simulation input
(i.e., from the correct values): Initial peak positions were
shifted towards each other by 25% of their correct dis-
tance, line widths were set to those used for simulating
the input, the initial relaxation times for both peaks
were set to the average of the two true relaxation times,
and both Gaussian and Lorentzian line forms were
tested.

2.3. Simulations using NOESY data

Simulations on NOESY spectra were designed to test
the ability of TWD to reproduce the input components
for various choices of S/N and signal overlap. For this
purpose, the resulting shapes were compared to the in-
put shapes for all three dimensions. All input data were
constructed from an experimental spectrum, a 15N-
NOESY–HSQC recorded for the protein azurin. This
spectrum was Fourier transformed in the HN and HNOE

dimensions, and a region covering the HN frequency
interval from 8.64 to 8.94 ppm was extracted. This re-
gion was decomposed with MUNIN into 20 compo-
nents as described earlier [4], and two of the resulting
components were selected. Each selected component
consisted of 21 points covering 0.3 ppm along the HN
dimension, 470 points covering the entire interval of
13.43 ppm along the HNOE dimension and 80 time do-
main points in the non-transformed 15N dimension. In
order to vary the degree of overlap, one of the compo-
nents was kept fixed, while the other one was modified
by shifting its HN frequency shape. The HNOE shape
had to be shifted simultaneously, in order to preserve
the diagonal peak as such. In addition, a section of the
same size as the selected region was chosen from a part
of the spectrum that contained no signals to provide the
basic noise for the simulation. This noise was scaled to
achieve various signal-to-noise ratios. For this test on
NOESY data, TWD calculations were performed with
a factor k of zero in expression (2), i.e., without Tikho-
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nov regularization. Because the input shapes originated
from an experimental spectrum, no absolute discrimina-
tion of weak peaks and noise is possible. Direct compar-
isons of the input and output shapes, e.g., with dot
products between corresponding shapes as used earlier
[1,4], tend to be insensitive to variations of small peaks.
Therefore, the analysis was based on a one-dimensional
peak picker [4], which was used with default parameters.
While the overall result of any peak picker depends on
its inherent properties and the run-time parameters cho-
sen, a comparison of input and output is nonetheless
informative provided that the same peak picker is used
with the same run-time parameters. However, compari-
sons with alternative methods based on other peak pick-
ers (e.g., peak picking in three dimensions) would
mainly reflect inherent features of different peak pickers.
Fig. 2. First planes of the input spectra for simulations of relaxation
data sets. (A–D) The extent of overlap of two peaks for four different
simulations. The total input for each simulation consists of 12 planes.
3. Results

3.1. Three-way decomposition of relaxation data

In a first test the simulation protocol of Fig. 1 was ap-
plied to relaxation data. Input spectra consisting of 12
planes were constructed as described in Section 2, and
the following three parameters were varied. Overlap be-
tween two peaks was changed from an initial separation
in each dimension of the peak centers of 8 spectral
points down to 2 points in steps of 2 points; this can
be compared to a half width at half height of 3 spectral
points in each frequency dimension. The extent of over-
lap for these four simulations is also illustrated in Fig. 2,
which shows the first planes with t = 0 (Eq. (4)). S/N
was varied in 15 steps by scaling the input S/N ratios be-
tween 10 and 100, calculated for the stronger peak in the
first of the 12 planes. Finally, calculations were per-
formed with a regularization factor k of 0.001, or with-
out regularization (k = 0) [14]. For each combination of
overlap, S/N and regularization factor, 50 individual
calculations were performed by noise reshuffling as de-
scribed in Section 2 to ensure significance of the statisti-
cal analysis.

Fig. 3 reports logarithms of accuracy according to
Eq. (6) as a function of S/N for the MUNIN calcula-
tions without (thick solid lines) and with regularization
(thin solid lines). Results for the different overlap situa-
tions described above and illustrated in Fig. 2 are re-
ported for both peaks (left and right panels,
respectively) in different pairs of panels. Fig. 4 provides
precision values as determined with Eq. (5) for the same
MUNIN calculations. The difference between using reg-
ularization or not is marginal for cases with small over-
lap. However, regularization may help in difficult
situations with strong overlap and low S/N. With high
S/N, regularization rather represents an unnecessary
distortion of the model. The precision should follow
the accuracy; otherwise one may for example obtain a
too optimistic impression of the reliability of the result-
ing relaxation times. For TWD calculations without reg-
ularization on cases with limited overlap, there is good
correspondence between precision and accuracy and
the difference is not significant (Figs. 3 and 4, A–C).
With high overlap, the over-estimation of the quality
of the data becomes more pronounced and one should
be more careful with the interpretation. With high S/
N, the above mentioned model distortions caused by



Fig. 3. Accuracy according to Eq. (6) as a function of S/N for various overlap situations. The panels on the left side, labeled ‘‘weak’’ correspond to
results for the weak peak in the overlap situations A–D in Fig. 2. Similarly, the panels on the right side, labeled ‘‘strong’’ correspond to results for the
strong peak in the overlap situations A–D in Fig. 2. The thin and thick solid lines correspond to MUNIN calculations with and without
regularization, respectively. The thin and thick dashed lines correspond to calculations with the ‘‘nlinLS’’ routine from the nmrPipe package using
Gaussian and Lorentzian line forms, respectively, in both frequency dimensions [20]. The dotted line stands for the use of a conventional procedure.
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regularization effect mostly the accuracy, thus increasing
the difference between accuracy and precision.

Accuracies and precisions of the TWD results are
also compared to those of other methods. The conven-
tional method, based on peak intensities alone, gives a
stable impression with little dependence of the accuracy
on S/N (dotted lines in Figs. 3 and 4). More worrying
here is the prominent discrepancies between accuracy
and precision, where with maximal overlap the precision
is among the best whereas the accuracy is among the



Fig. 4. Precision according to Eq. (5) as a function of S/N for various overlap situations. Panel labeling and definition of lines are as in Fig. 3.
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worst (Figs. 3D and 4D). In the case of strong overlap,
the approach implemented in the routine ‘‘nlinLS’’ of
the nmrPipe [20] package represents a more realistic tool
(dashed lines in Figs. 3 and 4). Indeed, when assuming
pure Lorentzian lines (thick dotted lines), this method
follows the lines for MUNIN both for accuracy and pre-
cision; with moderate to sizeable overlap (B- and C-pan-
els) it exceeds the MUNIN accuracy. However, it breaks
down with strong overlap (D-panels). Furthermore, it
shows a somewhat erratic behavior with low S/N,
caused by poor convergence of some of the 50 runs with
varied noise (see Section 2). In contrast to the simulated
input used here, experimental peaks are not strictly
Lorentzian, but are often approximated by a mixture
of Lorentzian and Gaussian curves [21,22]. Thus, the
striking differences observed in Figs. 3 and 4 between
the use of Lorentzian and Gaussian curves (thick and
thin dotted lines) indicate another potential instability.

Fig. 5 further analyzes the calculations with varying
overlap using a fixed S/N ratio of 32 (this value corre-



Fig. 5. Plots of average values of relaxation times from 50 runs with
different noise for varying signal overlap as defined in Fig. 2. S/N was
set to 32. The top and the bottom panel correspond to the weak and
strong peaks, respectively. Overlap is indicated along the horizontal
axis by referring to the different panels in Fig. 2. Similarly to Figs. 3
and 4, thin and thick solid lines correspond to MUNIN calculations
with and without regularization, thin and thick dashed lines to the use
of ‘‘nlinLS’’ with Gaussian and Lorentzian line forms, and the dotted
line to the use of a conventional procedure.
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sponds to the S/N observed in an application to the pro-
tein MBP; see Section 4) by plotting the average over 50
runs of the relaxation times, ÆTiæ, as a function of over-
lap for both peaks. Note that this average differs from
the one used in Fig. 3 where squares of deviations from
the correct value T0 are averaged. The MUNIN calcula-
tions yield values close to the correct ones of 28 and
40 ms over the entire range of signal overlap (solid
lines). While the calculations without regularization ap-
pear to perform better than those using regularization,
the differences lie within the error range. Again, compar-
isons to other methods may reveal intrinsic features of
individual approaches. As expected (and indicated in
[6]) the conventional method shows strong averaging
of the two relaxation times with increasing overlap (dot-
ted line). The ‘‘nlinLS’’ routine from nmrPipe [20] re-
sults in some averaging for the strongest overlap
situation when a Lorentzian line form is used, while with
a Gaussian line form a rather instable behavior is ob-
served (dashed lines).
3.2. Three-way decomposition of NOESY data

The simulation protocol of Fig. 1 was also used to
investigate the influence of overlap and S/N on the
extraction of data from a 3D NOESY. Two components
obtained by applying MUNIN to an experimental 15N-
NOESY–HSQC of azurin describe the NOEs involving
two HNs. Fig. 6A shows the shapes along the HNOE

dimension for the two components. The shapes along
the 15N dimension were kept fixed and in time-domain.
For illustration, the extent of overlap in this dimension
after Fourier transform is shown in Fig. 6B. The shapes
in the two proton dimensions for the second component
(thick lines in Figs. 6 and 7) were shifted simultaneously
to preserve the diagonal peak, and different overlap sit-
uations ranging from 0.0 to 0.056 ppm were constructed.
Noise taken from an empty region of the same spectrum
was scaled to achieve user-defined levels of S/N and
added to the input components as described in Section
2. S/N is defined here as the average intensities of the
diagonal peaks of the two components divided by the
variance of the noise. Note that the intensity of a
cross-peak seldom exceeds 5% of that of the diagonal
peak, and that therefore the signal-to-noise ratio for
cross-peaks is about 20 times smaller than the S/N re-
ported. The S/N in the original, unmodified 15N-
NOESY–HSQC was calculated as 326, and the S/N
was varied between 41 and 326.

Table 1 summarizes results for calculations for five
different degrees of overlap and varying S/N, and se-
lected situations indicated in the table are illustrated
in Fig. 7. It should be noted here that the primary out-
put of MUNIN are shapes; their interpretation by peak
picking yields a result that also depends on the charac-
teristic of the peak picker used. This is in particular true
for small peaks that naturally disappear in the noise
when S/N is reduced. However, an important question
concerns the possible appearance of false positives, i.e.,
new peaks created by distortions of the shapes in the
HNOE dimension. Thus, both the input and output
shapes were subjected to a one-dimensional peak picker
[4] along this dimension. The two numbers listed in
Table 1 for each combination of overlap and S/N re-
port the false positives detected for the two compo-
nents, i.e., peaks picked in the output shapes but not
in the input shape (the latter are indicated in Fig. 6A
by arrows). The MUNIN approach is thus successful
even with full overlap provided that S/N is high en-
ough. With increasing separation of the two compo-
nents, proper shapes are extracted even with very low
S/N. When both strong overlap is present and S/N
is low, the method fails by being no longer able to
correctly separate the two components. This can be
seen from the fact that false positives in one component
correspond to correct peaks from the other component.
Therefore, one output component tends to describe



Fig. 6. Two components used for simulations of the decomposition of a 15N-HSQC–NOESY. (A) Shapes along the HNOE dimension used as input
for the simulation. Peaks detected by peak picking are indicated by arrows. (B) Input shapes along the 15N dimension after Fourier transform. Thin
lines in both panels correspond to the first component, which was kept fixed, and thick lines to the second, moving component.
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both input components, while the other output compo-
nent contains merely noise.

Fig. 7 illustrates three critical situations with views
of the input and output. Panels A1 and A2 characterize
the case of complete overlap and S/N = 163.1 (labeled
‘‘(A)’’ in Table 1), panels B1 and B2 the case with
overlap of 0.014 ppm and S/N = 65.2 (labeled ‘‘(B)’’
in Table 1), and panels C1, C2, and C3 the case with
overlap of 0.056 ppm and S/N = 40.8 (labeled ‘‘(C)’’
in Table 1). Panels A1, B1, and C1 (the latter is plotted
at higher contour levels than the former two) of Fig. 7
show the input spectrum for the MUNIN decomposi-
tion, while panels A2, B2, and C2 of the same figure
show the resulting shapes along the HNOE dimension.
When compared to the shapes used for construction
of the input spectra shown in Fig. 6A, the output
shapes in panels A2 and B2 contain all but the very
smallest peaks, and no artifact peaks are observed; in
the panel C2 only the large peaks can be detected in
the output due to the decreased S/N, but still no
false positives are observed. Panel C3 of Fig. 7 is a
reconstruction of the spectrum according to Eq. (1)
using the output shapes of panel C2 and the corre-
sponding output shapes in the other two dimensions.
It shows that, even with the high level of noise present
in the input, the larger peaks can be detected. Compar-
ison of panel C3 with C1 (plotted at the same contour
levels) illustrates that the decomposition removes a sig-
nificant part of the noise, some of which with relatively
strong intensity.
4. Discussion and conclusions

The above systematic analyses of TWD calculations
applied to simulated input describing NOESY and
relaxation data provide a basis for the application of
TWD to various experimental data sets. Questions of
accuracy, robustness, and the relation between accuracy
and precision were addressed. In earlier applications of
MUNIN to relaxation data, reliability of the results
was indicated by internal criteria such as the residual
of the optimization (the value of expression (2) at the
end of the minimization), variation of the number of
components used (N in expression (2)), and comparison
to other methods [5,6]. In the analysis of relaxation
times for all assigned backbone amide groups of the pro-
tein MBP, it was proposed that TWD performs a proper
separation of strongly overlapped peaks, resulting in
accurate relaxation times. This explanation is confirmed
by the present calculations, in particular by Fig. 5 that is
based on the same S/N, 32, as observed in the MBP
spectra. Similarly, the power of TWD to separate NOEs
in a 15N-NOESY–HSQC observed for two amide pro-
tons with extensive overlap in both the HN and 15N
dimensions could be demonstrated quantitatively. False
peaks that would yield wrong distance restraints in a
structural study appear only with both strong overlap
and poor S/N. Furthermore, the first false positives to
appear are actually correct peaks but from the over-
lapped component, meaning that a NOE is indeed pres-
ent but it would receive a wrong assignment. For both



Fig. 7. Input and output of selected MUNIN decompositions for a 15N-HSQC–NOESY. The letters in the panel identifications (A, B or C)
correspond to overlap and S/N situations indicated in Table 1 by the same letters (see footnote d to this table). Panels with identifications containing
the number 1 provide the input spectra for the simulation. Panels with the number 2 show the output shapes along the HNOE dimension; these can be
compared to Fig. 6A. In addition, the panel with identification C3 shows a reconstruction of the spectrum from the output shapes according to Eq.
(1). Panels C1 and C3 are plotted at contour levels 1.5 times higher than panels A1 and B1.
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Table 1
Performance of TWD when applied to 3D NOESY data for various
choices of overlap and S/Na

S/Nb Peak separation (ppm)c

0.0 0.014 0.028 0.042 0.056

326.2 0 0 0 0 0 0 0 0 0 0
163.1 0 0 (A)d 0 0 0 0 0 0 0 0
108.7 (4) 4 0 0 0 0 0 0 0 0
81.5 (3) 4 0 0 0 0 0 0 0 0
65.2 (3) 4 0 0 (B)d 0 0 0 0 0 0
54.4 (3) 4 (3) 4 (3) 3 (2) 3 0 0
46.6 (3) 4 (3) 4 (2) 3 (1) 3 0 0
40.8 (2) 4 (2) 4 (1) 3 (1) 3 0 0 (C)d

a The two numbers in each entry indicate for both components how
many of the peaks detected in the output shapes along the HNOE

dimension have no matches in the input shapes. Numbers in
parentheses represent peaks whose matches in the input shapes were
found in the other component (because of mixing).
b S/N was calculated based on the intensity of the diagonal peak

after Fourier transformation in the 15N dimension.
c Overlap is indicated by the separation in ppm of the HN

frequencies of the two components.
d Calculations for the entries with labels (A), (B), and (C) are further

illustrated in Fig. 7.
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types of applications, also the limitations set by strong
overlap and/or poor S/N are characterized.

Another parameter that was investigated is the use of
regularization according to Tikhonov [17] (last term in
expression (2)). This regularization was shown earlier
to speed up the optimization process, in particular in dif-
ficult situations [6,14]. However, regularization is mostly
helpful in decompositions involving many components.
In the present simulations with only two components in-
volved, the motivation of using regularization is limited.
We have tested its influence for relaxation data because
this part of the simulation study provided more infor-
mation in terms of accuracy and robustness. Our con-
clusion is that regularization with a small value of k,
for example half the value used here, has no significant
negative consequences. With very high S/N, regulariza-
tion is less necessary, but in many experimental situa-
tions and when many components are present, the
earlier described advantages may well motivate some
regularization.

Besides the investigation on the absolute reliability of
TWD by means of accuracy and robustness, the MU-
NIN results regarding relaxation data were also com-
pared to results obtained with an alternative method.
While the use of a routine from the nmrPipe package
[20] provided in many cases a similar or even better
accuracy than MUNIN, the latter proved more robust
with low S/N and/or strong overlap. Furthermore, the
results for the former are strongly influenced by the
assumptions made on line forms (Lorentzian or Gauss-
ian), which are known to be problematic. For the pres-
ent simulations, assuming Lorentzian line forms is ideal
as this corresponds to the simulated data, but in a real
case mixtures of Lorentzian or Gaussian expressions
have been shown to work best [21,22].

Another issue that has been discussed in the context
of TWD is the observation of mixing between compo-
nents [1,4]. This occurs when the shapes from two com-
ponents along one dimension are very similar. Mixing
implies that the shapes in the other two dimensions con-
tain features of both true components. These true com-
ponents can be obtained as linear combinations of the
output components of TWD, a process referred to as
demixing. In the simulations presented here, we chose
to control peak overlap by moving the input compo-
nents in a diagonal manner (see for example Fig. 2). This
avoids mixing as long as possible when signals approach
each other. While demixing could have improved the fi-
nal results in a few cases, we chose to not apply this pro-
cedure and rather report a situation with significant
mixing as a failure (e.g., in Table 1).

In conclusion, TWD is able to extract accurate data
from NMR spectra and to escape interference by noise.
The method is robust, avoiding false positives and pro-
viding in general trustworthy precision data.
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